Measuring Test Environment Maturity

Measuring Your Test Environment Maturity

The goal of every company is to satisfy its users. This certainly applies in the software industry. However, as the number of users increases, they tend to make more demands. Increased demands will increase how complex software is, as these demands may require adding new features. And of course, software firms try hard to control defects in their products whenever they add a new feature.

Nevertheless, the industry is still far from zero defects. To avoid defects in products shipped to users, firms in the software industry must pinpoint defects in their test environment before shipping products to users.

What’s a test environment, and how are developers making sure that they can find and cure defects in that environment? We’ll discuss both topics in this article.

What Is a Test Environment?

A test environment is like a simulator that provides real-life visual representation. It includes a server that allows developers to run tests on their software.

A test environment also allows developers to include hardware and network configuration. The purpose of this is to let the test engineer mimic the production environment so that they can find defects. Also, test engineers can write custom tests and execute them in the test environment. This lets test engineers ensure that the software is responding as it ought to.

Let’s look at how test engineers make sure their test environment mimics the production environment. When that happens, the team can remove issues and defects from software before shipping it to users.

What Is Test Environment Maturity?

Test environment maturity is a set of leveled guides that help test engineers determine how well-developed and rigorous their testing system is. Test engineers need to understand how the products they’re about to test actually function. The engineers should also be able to define the process they’ll use in test environments and manage those environments. And there are different levels of test environment maturity.

To understand test environment maturity better, let’s look at the Test Maturity Model (TMM). We’ll examine the different levels and find out how test engineers can measure environment maturity.

Test Maturity Model (TMM)

In order for test engineers to manage their test processes properly, the Illinois Institute of Technology developed the TMM framework. This framework works well with the Capability Maturity Model (CMM), which is the industry standard for software process development.

The TMM framework defines five maturity levels so that test engineers can manage their testing processes properly. These maturity levels help test engineers identify the next improvement state in their test environment.

Test engineers can’t measure their test environment maturity if they don’t know the level of maturity of their test environment. This is exactly what the TMM maturity level does. It displays levels of maturity and the steps required to attain each level.

Maturity Levels

Each maturity level consists of steps that are essential to attain test environment maturity. Let’s look at the different TMM maturity levels and consider how test engineers can measure their test environment maturity.

1. Initial Level

In the first level in the TMM framework, the goal of the test engineer is to ensure that the software is running successfully. The goal here is simply to make sure that the software developers have developed a working product. Although TMM doesn’t identify any process area for this level, the software should be working fine without breaking. So Level 1 has a low bar!

2. Definition Level

Definition is the second maturity level in the TMM framework. In addition to ensuring that the software is running successfully in the test environment, the test engineer needs to define test policies. This is because at this maturity level, basic testing methods ought to be in place. You’re trying to answer the question, “Does the software do what it’s supposed to?”

The different process area that this level identifies are:

  • Test policies and goals: This is to make sure that test engineers specify goals and policies they need to achieve.
  • Test methods, techniques, and environment that test engineers are using: It’s essential to spell these out.

3. Integration Level

This level involves the integration of testing methods, techniques, polices, and environment defined in the definition level. It’s necessary to do this so test engineers can determine software behavior. During the integration level, the engineers test life cycle and integration. Completing this step ensures testing is organized and carried out in a professional manner.

4. Management and Measurement Level

This TMM maturity level ensures that test engineers carry out quality test processes. At this stage, developers can evaluate and review software for defects. For example, after the integration level, the test engineers need to make sure they pick out all of the defects. The process areas this level identifies are test measurement, evaluation, and reviews.

5. Optimization Level

This is the final level. At this stage, the aim is to ensure that test processes and environment are optimized. This maturity level is important because testing isn’t effective unless defects are controlled. In this level, the team members figure out how to prevent defects. The process areas in this level are test improvement, optimization, and quality control.

Best Practices in Measuring Test Environment Maturity

We’ve explored the different maturity levels for TMM and discussed how this model is the industry standard for software testing. In this section, we’ll explore the best practices for measuring test environment maturity.

Hire a Test Engineer

A test engineer is in charge of carrying out tests on software to make sure it performs as expected. It’s important to employ a test engineer to manage software testing. Why? Because a qualified test engineer is highly skilled in using the right test environment, techniques, and tools.

Understand the Test Maturity Model

When you employ a test engineer for your firm, make sure that they understand the test maturity model. This is because they can’t measure what they don’t understand! Fully understanding the test maturity model will enable the test engineer to determine which processes are covered in each level and precisely what level their test environment has gotten to.

Don’t Skip Steps

It’s a bad practice to skip or merge different levels of the maturity models. This will not only make software testing confusing, but it may also produce adverse test results. Therefore, direct test engineers to write down the maturity levels and proposed date of completion before beginning to test.

Automate Testing

When test engineers automate testing, it becomes easier and faster to measure test environment maturity. For example, this test environment and management tool from Enov8 allows test engineers to automate tests and manage test environments without a hitch.

Measuring Test Environment Maturity Goes Better When You Understand Test Environment Management

Knowledge of TMM maturity levels isn’t enough to measure test environment maturity properly. To do so, test engineers need to be familiar with test environment management (TEM) and how it applies to TMM. So, let’s explore TEM.

Test environment management, according to Enov8, is the act of understanding IT environments across the life cycle and proactively controlling them to ensure they’re effectively used, serviced, and deleted promptly. With test environment management, test engineers can easily analyze software capability. This is because proper test environment management allows test engineers to measure test environment maturity properly. For this reason, there are tools like Test Environment Management Maturity index (TEMMi) to help firms understand test environment management.

Author

This post was written by Ukpai Ugochi. Ukpai is a full stack JavaScript developer (MEVN), and she contributes to FOSS in her free time. She loves to share knowledge about her transition from marine engineering to software development to encourage people who love software development and don’t know where to begin.

Comparing Configuration and Asset Management

When you’re running an IT organization, it’s not just the business that you have to take care of. One part of running a business is building, creating, and providing what your customers need. The other part is management. Out of all the things you have to manage, configurations and assets are two of the most important.

Although people often think of configuration management and asset management as the same thing, but they are different. People also sometimes confuse these terms with each other. So, in this post, I’ll explain what configuration management and asset management are and how they’re different. Let’s start by understanding each of these terms.

What Is Configuration Management?

Configuration management is the management of configuration items. So, what are configuration items?

Configuration Items

Any organization provides certain services. These services might be the ones being provided to customers or to internal users. Either way, creating and providing these services requires some components. So, any component that needs to be managed to deliver services is called a “configuration item.”

Too confusing? No worries—I’ll explain with an example. Consider that you’re providing a service that tracks an organization’s user data. In this case, you can consider the software to be the component that needs to be managed. It’s important that you manage this software to make sure your service works fine. This means that your software is a configuration item. Another way of defining a configuration item is that it’s a component that’s subject to change to make the service delivery better.

What Information Is to Be Managed?

When you manage the attributes of such configuration items, that’s configuration management. So, what kind of information do you have to manage? You have to manage attributes such as ownership, versioning, licensing, and types. Let’s consider an example in which you’re using software for internal tasks.

Now you’ve identified that the software that provides service is your configuration item. The next step is to manage information related to that software. The software developer will have released different versions of the software with updates and new features. You obviously look out for better versions of the software or the version that best suits your requirements. One piece of information that you have to manage is the details of the software versions.

Another example is when you’re using licensed software. The software will be licensed to a particular person or company, and the license will be valid for a certain period of time. Such information becomes the attribute you have to manage. Now that you know what configuration management is, let me tell you a little about how it’s done.

Configuration Management Database

An easy way to manage information on configuration items is by using a configuration management database (CMDB). A configuration management database is just like any other database that stores data, but it specifically stores information related to configuration items.

Configuration Management System

Configuration management isn’t easy. You have to take care of lots of tasks, such as tracking the data and adding and modifying configuration items. To make configuration management easy, you can use a configuration management system (CMS), which is software that helps you manage your configuration items. A typical CMS provides functions for storing and managing CI data, auditing configuration, making changes to the configurations, and so on.

Now that you know what configuration management is, let’s talk about asset management.

Asset Management

In generic terms, anything that’s useful is an asset. If you own a house or a property, that’s an asset for you. So is your car or your phone. When it comes to an organization, anything that’s useful to the organization is an asset. Assets can be capital, office property, the servers locked in your highly secured server room, and so on. But IT assets aren’t limited to physical or material things. The knowledge stored in your employees’ brains is also a valuable asset to your organization.

So, basically, tracking and managing the assets of your organization throughout its life cycle is asset management. The main aim of asset management is to create processes and strategies that help in managing assets properly. The asset management process starts right from the moment of acquiring the asset until disposing of the asset.

For example, let’s say you have an organization that builds and manages web applications. As part of this, you own some servers that you host the web applications on. You also have some databases where you store data for your clients. In this case, your asset management process starts from the time you bought the servers and the databases. You have to manage the buying, maintenance, and inventory costs. Along with that, you also have to take care of regular updates, audits, security implementations, and any changes that you make. This asset management goes on either until the assets are damaged or until they stop being useful to your organization and are disposed.

Asset management directly involves finance. You have to consider the inventory, governance, and regulatory compliance along with the financial aspects in asset management.

Why Do You Need Asset Management?

Asset management helps you understand your financial flow and how to efficiently plan your finances. You can easily track your asset throughout its life cycle. This helps you analyze incidents if something went wrong. Management of assets improves your assets’ quality and performance, which helps your business.

The asset management process helps you stay compliant with various rules and regulations. This improves the quality of your business and also saves you money on audits and fines. Because asset management lets you track your assets, you can plan more efficient strategies for operations.

Configuration Management vs. Asset Management

Now that I’ve explained each of these terms, I hope you understand what they mean. At some point, you might have felt that they were the same. To eliminate any lingering confusion, let me highlight the differences between them.

Asset management is managing anything valuable to your organization. You can consider configuration management to be part of asset management. Configuration management mainly focuses on managing configuration items and their attributes. These attributes mainly affect the delivery of the service.

In the case of asset management, it’s more of a financial perspective. You track the asset to understand the financial flow and need for that asset throughout its life cycle.

To understand the difference, let’s take an example of a hardware component that you’re using—let’s say, a database. When you’re using a database, the database itself becomes an asset. You have to manage the maintenance, track the asset, conduct audits, and so on. This is asset management. The same database will have software versions. Keeping track of the software version, updating it, and tracking which other components it works with becomes part of configuration management.

Configuration management and asset management might sound the same at a high level, but they have different purposes and are implemented differently. Understanding such terms with the help of an example really makes it easy to understand the differences, hopefully, the explanations and examples here have helped you.

Author

This post was written by Omkar Hiremath. Omkar uses his BE in computer science to share theoretical and demo-based learning on various areas of technology, like ethical hacking, Python, blockchain, and Hadoop.

DevOps Tool CHain

What Is a DevOps Toolchain and Why Have One?

DevOps is not a technology, it’s an approach. Though there’s flexibility in how to use it, there’s also the added responsibility of using it in the best possible way. The whole idea of DevOps is to make the software development process smoother and faster. And one of the most important decisions needed to achieve this is to decide on the right toolchain.

So in this article, I’ll tell you what a DevOps toolchain is and why you should have one.

What Is a DevOps Toolchain?

The whole DevOps practice stands on two main pillars: continuous integration and continuous delivery. This means that the changes and upgrades to a product must be integrated at greater frequency, and they should be available to the users at greater speed. A DevOps toolchain is a set of tools that helps you achieve this. But why are multiple tools needed? Why not just use one? That’s because DevOps is a practice that has different stages. To help you understand this, I’ll take you through the different stages of a software development pipeline that’s based on a DevOps approach and review what tools you can use.

Planning

The first step of doing anything is planning, and that holds true for DevOps as well. Planning includes the personnel inside the organization as well as the clients. Both need to have a clear understanding of what they want to build and how they are going to do it. Therefore, transparency plays an important role. You can use tools like Slack, Trello, and Asana for the planning stage.

Collaboration

The beauty of DevOps is that it requires multiple teams to collaborate and work together for efficient software delivery. Once the planning is done, you need to focus on collaboration. Collaboration happens between people from different teams, who might have different working styles or live in different time zones. Easy collaboration requires transparency and good communication. Some of the tools available for collaboration include Slack, Flowdock, WebEx, and Skype.

Source Control

Source control aka version control means managing your source code. In DevOps, where there are frequent updates to the source code, it’s important that you handle it carefully. This means you need a tool that can manage the source code and make different branches available as required, especially when multiple teams are working on a single product. Some of the most popular source control tools are Git and Subversion.

Tracking Issues

You should also be ready for issue occurrence. And when it comes to issue handling, tracking the issue plays an important role. Issues should be tracked in a transparent way that provides all the necessary details required to properly resolve them, and improved tracking results in faster resolution. You might want to consider using tools like Jira, Zendesk, Backlog, and Bugzilla.

Continuous Integration

This stage, as mentioned earlier, is one of the most important parts of the DevOps practice. This is the stage where modular code updates are integrated into the product to make frequent releases. It’s commonly known to developers that the code doesn’t always work smoothly when it makes it to production. You need a tool that helps with easy integration, detecting bugs, and fixing them. Jenkins, Bamboo, Travis, and TeamCity are some of the most popular tools.

Configuration Management

When developing a product, you will have to use different systems. Configuration management tools help you in maintaining consistency across systems by configuring all the systems automatically for you. They basically configure and update your systems as and when required. The configuration management tools that are heard of quite often are Ansible, Puppet, and Chef.

Repository Management

DevOps teams work together to release updates as soon as possible, and when multiple teams are working on them, there will be an update every day or maybe even every hour. With this frequency, it’s important to have a tool that manages binary artifacts and metadata. The repository management tools help push the product or a part of the product from the development environment to the production environment. Some well-known tools for repository management are Nexus and Maven.

Monitoring

Monitoring helps you understand how good or bad the release was. When there are frequent updates to your product, you can’t expect every release to perform well. Sometimes certain releases break the product, create security issues, decrease the performance, or bring down the user experience. The best way to understand what your update has resulted in is by monitoring it. Monitoring tools help you decide whether your release needs aid or not. You can use tools like Sensu, Prometheus, or Nagios.

Automated Testing

You’d for sure want to test your code before making it available to the users. When continuous delivery is the goal, manual testing would slow down the process. Automated testing makes the testing process faster because the tool does the testing, and the computer is faster than a human being. Also, there is no chance of human errors. But you have to make sure that the automated testing tool you choose is efficient and reliable because you cannot afford to have any mistakes here. A few tools you can choose for automated testing are QTP and TestComplete.

Deployment

This is the stage that actually delivers your product and its updates to the end users, and there are a few things that may go wrong here. The main purpose of deployment tools is to make continuous and faster delivery possible. Some of the most popular tools used for deployment are IBM uDeploy and Atlassian Bamboo.

Now that you understand what a DevOps toolchain is and which are some of the most used tools in the industry, let’s understand why it’s important to have a DevOps toolchain.

Why You Should Have a DevOps Toolchain

A DevOps toolchain is needed to maximize the positive outcome of DevOps practice, and it’s achieved when you choose your toolset wisely. A wisely chosen DevOps toolchain will show how the DevOps approach helps you build high-quality products with fewer errors and enhanced user satisfaction.

The first advantage of using a DevOps toolchain is that it decreases the defects and increases the quality of your products. Because of features like automated testing and error-checking deployment tools, there is also less room for errors. This is good for your business and the reputation of your company.

The second advantage is that a DevOps toolchain helps you innovate your product faster. Because the toolchain results in faster planning, building, testing, and deploying, you have more opportunities to innovate. The more innovative your product is, the more business you get.

The final advantage is related to incident handling. The toolchain helps you identify and manage major incidents. Doing so facilitates finding solutions to the incidents faster and letting the respective team know about the incident. This helps improve the support and quality of the product.

In Conclusion

Now that you’ve read about what the DevOps toolchain is and why you need it, it’s time to choose which ones are right for you. Even though I’ve mentioned a number of tools for various purposes, the ones you pick will differ based on what best suits your use case. There’s no universal toolchain that works best for everyone. You’ll know what’s best for you only after you understand your requirements and then choose the tools accordingly.

Author

This post was written by Omkar Hiremath. Omkar uses his BE in computer science to share theoretical and demo-based learning on various areas of technology, like ethical hacking, Python, blockchain, and Hadoop.